organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,5'-Dimethyl-2,2'-bipyridine

Zeinab Khoshtarkib,^a Amin Ebadi,^b Roya Ahmadi^a and Robabeh Alizadeh^c*

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran, and ^cDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran Correspondence e-mail: alizadeh@dubs.ac.ir

Received 19 May 2009; accepted 20 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.066; wR factor = 0.205; data-to-parameter ratio = 21.2.

The asymmetric unit of the title compound, $C_{12}H_{12}N_2$, contains two half-molecules related by an inversion center, the planes of their pyridine rings being oriented at a dihedral angle of 69.62 (4)°. In the crystal structure, a π - π contact between the pyridine rings [centroid-centroid distance = 3.895 (3) Å] may stabilize the structure. A weak C-H··· π interaction is also found.

Related literature

For related structures, see: Ahmadi *et al.* (2008); Albada *et al.* (2004); Amani *et al.* (2007); Kalateh *et al.* (2008); Khalighi *et al.* (2008); Maheshwari *et al.* (2007); Tadayon Pour *et al.* (2008). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{12}N_2 \\ M_r = 184.24 \\ \text{Triclinic, } P\overline{1} \\ a = 6.409 \ (4) \ \text{\AA} \\ b = 7.312 \ (5) \ \text{\AA} \\ c = 11.533 \ (8) \ \text{\AA} \\ \alpha = 96.04 \ (5)^{\circ} \\ \beta = 91.16 \ (4)^{\circ} \end{array}$

 $\gamma = 105.03 (5)^{\circ}$ $V = 518.4 (6) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K $0.50 \times 0.41 \times 0.29 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	2739 independent reflections 2067 reflections with $I > 2\sigma(I)$
Absorption correction: none 6191 measured reflections	$R_{\rm int} = 0.082$
or of the additional teneoritoria	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	129 parameters
$vR(F^2) = 0.205$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
2739 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9\cdots Cg1^{i}$	0.93	2.78	3.669 (3)	160

Symmetry code: (i) -x + 1, -y + 2, -z + 2. Cg1 is the centroid of the N1,C1–C4,C6 ring.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to Damghan University of Basic Sciences for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2693).

References

- Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.
- Albada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.
- Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.
- Maheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta Cryst. B63, 603–611.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.

supplementary materials

Acta Cryst. (2009). E65, o1586 [doi:10.1107/S1600536809019151]

5,5'-Dimethyl-2,2'-bipyridine

Z. Khoshtarkib, A. Ebadi, R. Ahmadi and R. Alizadeh

Comment

5,5'-Dimethyl-2,2'-bipyridine, (5,5'-dmbipy), is a good bidentate ligand, and numerous complexes with 5,5'-dmbipy have been prepared, such as that of zinc (Khalighi *et al.*, 2008), mercury (Tadayon Pour *et al.*, 2008), iron (Amani *et al.*, 2007), indium (Kalateh *et al.*, 2008), cadmium (Ahmadi *et al.*, 2008), copper (Albada *et al.*, 2004) and platin (Maheshwari *et al.*, 2007). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig.1) contains two halves molecules, in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/C1-C4/C6) and B (N2/C7-C10/C12) are, of course, planar and they are oriented at a dihedral angle of A/B = 69.62 (4)°.

In the crystal structure (Fig. 2), the π - π contact between the pyridine rings, Cg2—Cg2ⁱ [symmetry code: (i) 1 - x, 2 - y, 2 - z, where Cg2 is centroid of the ring B (N2/C7-C10/C12)] may stabilize the structure, with a centroid-centroid distance of 3.895 (3) Å. There also exists a weak C—H··· π interaction (Table 1).

Experimental

For the preparation of the title compound, a solution of 5,5'-dimethyl-2,2' -bipyridine (0.15 g, 0.80 mmol) in methanol (15 ml) was added to a solution of BaCl₂.2H₂O, (0.10 g, 0.40 mmol) in water (5 ml) and the resulting colorless solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (a) 1 - x, 2 - y, 1 - z, (b) -x, 2 - y, 2 - z].

Fig. 2. A partial packing diagram of the title compound.

5,5'-Dimethyl-2,2'-bipyridine

Crystal data	
$C_{12}H_{12}N_2$	Z = 2
$M_r = 184.24$	$F_{000} = 196$
Triclinic, PI	$D_{\rm x} = 1.180 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.409 (4) Å	Cell parameters from 1133 reflections
b = 7.312 (5) Å	$\theta = 1.8 - 29.3^{\circ}$
<i>c</i> = 11.533 (8) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 96.04 \ (5)^{\circ}$	T = 298 K
$\beta = 91.16 \ (4)^{\circ}$	Prism, colorless
$\gamma = 105.03 \ (5)^{\circ}$	$0.50\times0.41\times0.29~mm$
$V = 518.4 (6) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	2067 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.082$
Monochromator: graphite	$\theta_{\text{max}} = 29.3^{\circ}$
T = 298 K	$\theta_{\min} = 1.8^{\circ}$
ϕ and ω scans	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -10 \rightarrow 10$
6191 measured reflections	$l = -15 \rightarrow 15$
2739 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.205$	$w = 1/[\sigma^2(F_0^2) + (0.1057P)^2 + 0.0566P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.002$
2739 reflections	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$

129 parameters

 $\Delta \rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.4778 (2)	0.76393 (19)	0.53822 (13)	0.0604 (4)
N2	0.0741 (2)	0.77876 (19)	0.99037 (14)	0.0656 (4)
C1	0.4223 (2)	0.92544 (19)	0.52837 (12)	0.0486 (3)
C2	0.2280 (2)	0.9529 (2)	0.56860 (14)	0.0579 (4)
H2	0.1916	1.0661	0.5601	0.069*
C3	0.0896 (3)	0.8105 (3)	0.62124 (16)	0.0655 (4)
Н3	-0.0407	0.8276	0.6480	0.079*
C4	0.1445 (3)	0.6443 (2)	0.63387 (13)	0.0594 (4)
C5	0.0011 (4)	0.4859 (3)	0.69263 (18)	0.0797 (6)
H5C	0.0475	0.3716	0.6761	0.096*
H5B	-0.1459	0.4638	0.6637	0.096*
H5A	0.0105	0.5218	0.7755	0.096*
C6	0.3403 (3)	0.6293 (2)	0.58998 (16)	0.0641 (4)
H6	0.3793	0.5168	0.5971	0.077*
C7	0.0828 (2)	0.96057 (19)	1.02576 (12)	0.0513 (4)
C8	0.2406 (3)	1.0695 (2)	1.10747 (14)	0.0632 (4)
H8	0.2442	1.1958	1.1315	0.076*
С9	0.3905 (3)	0.9892 (3)	1.15227 (15)	0.0679 (5)
Н9	0.4973	1.0614	1.2066	0.082*
C10	0.3838 (3)	0.8018 (2)	1.11714 (14)	0.0600 (4)
C11	0.5426 (3)	0.7065 (3)	1.1636 (2)	0.0793 (5)
H11C	0.5070	0.5755	1.1305	0.095*
H11B	0.5374	0.7130	1.2470	0.095*
H11A	0.6856	0.7699	1.1431	0.095*
C12	0.2214 (3)	0.7049 (2)	1.03580 (18)	0.0686 (5)
H12	0.2146	0.5782	1.0109	0.082*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0614 (8)	0.0537 (7)	0.0719 (8)	0.0235 (6)	0.0113 (6)	0.0111 (6)
N2	0.0615 (8)	0.0483 (7)	0.0819 (9)	0.0103 (6)	-0.0066 (7)	-0.0034 (6)
C1	0.0470 (7)	0.0513 (7)	0.0491 (7)	0.0170 (6)	-0.0020 (5)	0.0031 (5)
C2	0.0500 (8)	0.0626 (9)	0.0669 (9)	0.0231 (6)	0.0037 (6)	0.0129 (7)
C3	0.0508 (8)	0.0790 (11)	0.0696 (9)	0.0200 (8)	0.0091 (7)	0.0131 (8)
C4	0.0607 (9)	0.0615 (9)	0.0513 (7)	0.0076 (7)	0.0001 (6)	0.0067 (6)
C5	0.0809 (13)	0.0784 (12)	0.0723 (11)	0.0034 (10)	0.0095 (9)	0.0176 (9)
C6	0.0734 (10)	0.0539 (8)	0.0690 (9)	0.0212 (7)	0.0104 (8)	0.0125 (7)
C7	0.0527 (7)	0.0454 (7)	0.0523 (7)	0.0062 (6)	0.0075 (6)	0.0052 (5)
C8	0.0722 (10)	0.0521 (8)	0.0608 (8)	0.0129 (7)	-0.0068 (7)	-0.0031 (6)
C9	0.0727 (10)	0.0664 (10)	0.0595 (9)	0.0131 (8)	-0.0108 (7)	0.0003 (7)
C10	0.0567 (8)	0.0625 (9)	0.0620 (8)	0.0137 (7)	0.0086 (7)	0.0158 (7)
C11	0.0705 (11)	0.0809 (13)	0.0911 (13)	0.0247 (10)	-0.0004 (10)	0.0194 (10)
C12	0.0640 (10)	0.0500 (8)	0.0896 (12)	0.0137 (7)	-0.0015 (8)	0.0017 (8)
Geometric par	ameters (Å, °)					
C1—N1		1.334 (2)	С7—	N2	1.33	5 (2)
C1—C2		1.393 (2)	С7—	C8	1.389 (2)	
$C1 - C1^{i}$		1.491 (3)	C7—	C7 ⁱⁱ	1 475 (3)	
$C^2 - C^3$		1 384 (3)	C8—	C9	1 368 (3)	
C2—H2		0.9300	C8-	H8	0.9300	
$C_2 - C_4$		1 371 (3)	C9		1.377 (3)	
С3—Н3		0.9300	C9—	H9	0.93	600
C4—C6		1.389 (3)	C10–	C12	1.38	30 (3)
C4—C5		1.511 (3)	C10-	-C11	1.49	94 (3)
C5—H5C		0.9600	C11–	-H11C	0.96	500
С5—Н5В		0.9600	C11–	-H11B	0.96	500
C5—H5A		0.9600	C11–	-H11A	0.9600	
C6—N1		1.340 (2)	C12–	N2	1.327 (2)	
С6—Н6		0.9300	C12–	-H12	0.93	600
N1—C1—C2		121.57 (15)	N2—	C7—C7 ⁱⁱ	116.	.86 (16)
N1—C1—C1 ⁱ		116.75 (16)	C8—	C7—C7 ⁱⁱ	121	.84 (17)
$C2-C1-C1^{i}$		121.68 (16)	С9—	C8—C7	119.	.40 (16)
C3—C2—C1		119.51 (15)	С9—	С8—Н8	120	.3
С3—С2—Н2		120.2	С7—	C8—H8	120	.3
C1—C2—H2		120.2	C8—	C9—C10	120	.16 (16)
C4—C3—C2		119.99 (16)	C8—	С9—Н9	119	.9
С4—С3—Н3		120.0	C10-	-С9—Н9	119.	.9
С2—С3—Н3		120.0	С9—	C10—C12	116.	.32 (17)
C3—C4—C6		116.29 (16)	С9—	C10—C11	122	.45 (18)
C3—C4—C5		122.09 (17)	C12-	-C10-C11	121	.22 (17)
C6—C4—C5		121.62 (17)	C10-	-C11-H11C	109	.5
C4—C5—H5C		109.5	C10–	C11H11B	109	.5

C4—C5—H5B	109.5	H11C-C11-H11B	109.5	
Н5С—С5—Н5В	109.5	C10-C11-H11A	109.5	
С4—С5—Н5А	109.5	H11C-C11-H11A	109.5	
Н5С—С5—Н5А	109.5	H11B—C11—H11A	109.5	
H5B—C5—H5A	109.5	N2-C12-C10	124.98 (16)	
N1—C6—C4	125.26 (16)	N2-C12-H12	117.5	
N1—C6—H6	117.4	C10-C12-H12	117.5	
С4—С6—Н6	117.4	C1—N1—C6	117.36 (15)	
N2—C7—C8	121.30 (15)	C12—N2—C7	117.84 (15)	
N1—C1—C2—C3	0.7 (2)	C8—C9—C10—C12	0.4 (3)	
C1 ⁱ —C1—C2—C3	-179.66 (16)	C8—C9—C10—C11	-179.67 (17)	
C1—C2—C3—C4	0.3 (3)	C9—C10—C12—N2	-0.2 (3)	
C2—C3—C4—C6	-0.9 (3)	C11-C10-C12-N2	179.92 (17)	
C2—C3—C4—C5	178.87 (16)	C2—C1—N1—C6	-0.9 (2)	
C3—C4—C6—N1	0.7 (3)	C1 ⁱ —C1—N1—C6	179.44 (15)	
C5-C4-C6-N1	-179.06 (16)	C4—C6—N1—C1	0.2 (3)	
N2—C7—C8—C9	0.2 (3)	C10-C12-N2-C7	-0.1 (3)	
C7 ⁱⁱ —C7—C8—C9	-179.88 (17)	C8—C7—N2—C12	0.0 (3)	
C7—C8—C9—C10	-0.5 (3)	C7 ⁱⁱ —C7—N2—C12	-179.87 (17)	
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$; (ii) $-x$, $-y+2$, $-z+2$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9—H9····Cg1 ⁱⁱⁱ	0.93	2.78	3.669 (3)	160
Symmetry codes: (iii) $-x+1$, $-y+2$, $-z+2$.				

Fig. 1

Fig. 2